Class: Date:	Indian School Al Wadi Al Kabir Assessment 1 (2022-2023) Sub: MATHEMATICS(041) Max Marks: 80 Time: 03 hrs.
General Instructions: 1. This question paper contains two sections - A and B. Each part is compulsory. 2. Section - A has 24 Objective type questions of 1 mark each and two case study-based questions of 4 marks each. 3. Section - \mathbf{B} has $\mathbf{0 8}$ questions of $\mathbf{0 2}$ marks, $\mathbf{0 4}$ questions of $\mathbf{0 3}$ marks and $\mathbf{0 4}$ questions of $\mathbf{0 5}$ marks. 4. Internal choice has been provided.	
SECTION A (1mark)	
Q1.	List all the elements of the set $A=\left\{x: x^{2} \leq 4, x \in Z\right\}$
Q2.	In a school there are 20 teachers who teach mathematics or physics. Of these, 12 teach mathematics and 4 teach both physics and mathematics. How many of them teach physics? OR A market research group conducted a survey of 1000 consumers and reported that 720 consumers like product A and 450 consumers like product B , what is the least number that must have liked both products?
Q3.	Write $\mathrm{P}(\mathrm{A})$ if $\mathrm{A}=\{1,2\}$.
Q4.	Write the set builder form of $A=\{2,4,6,8,10\} \quad$ OR $\mathrm{A}=\{1,2,3\}$ and $B=\{3,4,5\}$ then write $(A-B) U(B-A)$
Q5.	How many relations can be defined from A to B if $n(A)=3$ and $n(B)=2$.
Q6.	Write the domain of the real valued function $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}+1}{\mathrm{x}^{2}-9}$.
Q7.	If $A=\{5,6\}$ and $B=\{6,8,10\}$ then write $B \times A$.
Q8.	If $\mathrm{R}=\{(x, 2 x-1): x=0,1,2,3\}$, then write R in roster form.
Q9.	Evaluate: $\cos 480^{\circ}$ Convert 2.2 radians to degree measure. ($\pi=\frac{22}{7}$) OR
Q10.	Evaluate: $\cot \left(\frac{19 \pi}{4}\right)$.

Q22.	Which of the following relations are functions?							
	A	i and ii	B	ii and iv	C	i, ii, iii and iv	D	none of these
Q23.	Range of the function $f(x)=\frac{x^{2}}{x^{2}+1}$							
	A	$\{1,2\}$	B	$[0, \infty)$	C	$[0,1)$	D	$(-\infty, 1)$
Q24.	The domain and range of the function $f(x)=\sqrt{9-x^{2}}$							
	A	$\begin{gathered} \text { Domain: }[0,3] \\ \text { Range: }[0,3] \end{gathered}$	B	$\begin{aligned} & \text { Domain: }[-3,3] \\ & \text { Range: }[0,3] \end{aligned}$	C	Domain: $\{0,3\}$ Range: $\{0,3\}$	D	$\begin{gathered} \text { Domain: }\{-3,3\} \\ \text { Range: }\{0,3\} \end{gathered}$
	Section A-Case Study based questions							
Q25.	CASE STUDY QUESTIONS In a group of 50 students, the number of students studying Physics, Biology and Mathematics were found to be as follows. Physics - 17, Biology - 13, Mathematics - 15, Physics and Biology - 9, Biology and Mathematics - 4, Physics and Mathematics - 5, All three subjects - 3 . Based on the above information answer the following questions. (ANSWER ANY FOUR QUESTIONS)						-	
	Find the number of students i) who study none of the three subjects. A) 20 B) 27 C) 30 D) 10 ii) who study Physics and Biology but not Mathematics. A) 9 B) 12 C) 6 D) 10 iii) Who study exactly one of the subjects. A) 30 B) 20 C) 21 D) 18 iv) Who study at least one of the subjects. A) 37 B) 30 C) 20 D) 34 v) Who study exactly two of the three subjects. A) 3 B) 12 C) 8 D) 9							

Q26.	Sherlin and Danju are playing Ludo. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set $\{1,2,3,4,5,6\}$. Let A be the set of players while B be the set of all possible outcomes. Answer the following questions based on the above informations:
	a. Let R be a relation from B to B such that $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})$: a divides $\mathrm{b}, \mathrm{a}, \mathrm{b} \in B\}$. Write R in roster form. b. Is the relation R a function? Why? Justify your answer.
	SECTION B (2marks)
Q27.	Let A and B are two finite sets such that $n(A)=m$ and $n(B)=n$. If the difference of number of subsets of A and B is 120 , find the values of m and $\mathrm{n} .(m>n)$
Q28.	Solve: $\|x-2\| \leq 3 \quad$ OR \quad Solve: $\frac{x}{3}+\frac{x}{4}+x<19$
Q29.	If $A=\{0,1,2,3,4,5\}$ and a relation R is defined as $R=\{(x, y): x, y \in A, x+y>7\}$. Express the relation as set of ordered pairs and determine the domain and range of R .
Q30.	The water acidity in a pool is considered normal when the average p^{H} reading of three daily measurements is between 8.2 and 8.5.If the first two readings are 8.4 and 8.3 then find the range of p^{H} value for the third reading that will result in the acidity level being normal.
Q31.	For three sets A, B and C shade the following using a Venn diagram: $(A \cap B U C)$ OR If A and B are two sets containing 3 elements and 6 elements respectively. What can be the maximum number of elements in AUB? Find also the minimum number of elements in AUB.
Q32.	Write the domain and range of the function $f(x)=\|x\|-2$
Q33.	Prove: $\frac{\boldsymbol{\operatorname { t a n }}\left(\frac{\pi}{4}+\mathrm{x}\right)}{\boldsymbol{\operatorname { t a n }}\left(\frac{\pi}{4}-\mathrm{x}\right)}=\left(\frac{1+\boldsymbol{\operatorname { t a n } x}}{1-\boldsymbol{\operatorname { t a n } x}}\right)^{2}$. OR Prove: $\tan 3 \mathrm{x} \tan 2 \mathrm{x} \tan \mathrm{x}=\tan 3 \mathrm{x}-\tan 2 \mathrm{x}-\tan \mathrm{x}$
Q34.	Find all pairs of consecutive odd natural numbers, both of which are larger than 10, such that their sum is less than 29.

	SECTION B (3marks)
Q35.	A, B and C are three sets defined as $A=\left\{x: x^{2}+x-6=0\right\}, B=\{x: 1<x<4, x \in N\}$ and $C=\{x: x$ is a prime number less than 5$\}$. Determine which of the sets A, B and C are equal. Why?
Q36.	Prove: $\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi-x)[\tan x+\cot x]=1$ OR Evaluate: $\tan \frac{\pi}{8}$.
Q37.	Prove that $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0 \quad$ OR If $\tan A=\frac{3}{4}, A \in$ III Quadrant, then evaluate $\sin \frac{A}{2}$.
Q38.	In an experiment, a solution of hydrochloric acid is to be kept between 30° and 35° Celsius. What is the range of temperature in degree Fahrenheit if conversion formula is given by $C=\frac{5}{9}(F-32)$, where C and F represent temperature in degree Celsius and degree Fahrenheit, respectively.
	Section B (5 Marks)
Q39.	Solve the inequalities and represent the solution on number line: $2(2 x+3)-10<6(x-2) ;\left(\frac{x-7}{2}\right) \leq 10-x$
Q40.	$\begin{aligned} & U=\{0,1,2,3, . .10\}, \quad A=\{2,3,4,5\}, B=\{3,5,7,9\}, C=\{1,3,5,7,9\} . \\ & \text { Find (i) }(A \cap B)^{\prime}, \quad \text { (ii) } A-(B \cup C), \quad \text { (iii) }(A-B) U(B-C) . \\ & \text { Verify }: A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \end{aligned}$
Q41.	If f and g are real valued functions defined as $f(x)=x^{2}+7, g(x)=3 x+5$. Then evaluate each of the following: i) $f(-3)+g(-5)$ ii) $f(g(-1))$ iii) $g(f(0))$ iv) $f(0)-g\left(\frac{2}{3}\right)$ v) $\frac{f(t)-g(1)}{t-1}, t \neq 1$
Q42.	Prove: $\frac{\sin A+\sin 3 A+\sin 5 A+\sin 7 A}{\cos A+\cos 3 A+\cos 5 A+\cos 7 A}=\tan 4 A$ OR Prove: $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$.

